Independent restricted domination and the line digraph

نویسندگان

  • P. Delgado-Escalante
  • H. Galeana-Sánchez
چکیده

Let H be a digraph possibly with loops and let D be a digraph whose arcs are colored with the vertices of H (an H-colored digraph). A walk (path) P in D will be called an H-restricted walk (path) if the colors displayed on the arcs of P form a walk in H. An H-restricted kernel N is a set of vertices of D such that for every two different vertices in N there is no H-restricted path in D joining them, and for every x in V (D) − N there exists an H-restricted path in D from x to N . For the line digraph of D we consider its inner arc-coloration, defined as follows: If h is an arc of D with color c then any arc of the form (x, h) in L(D) also has color c. We prove that the number of H-restricted kernels in an H-colored digraph is equal to the number of H-restricted kernels in the inner coloration of its line digraph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

Restricted domination in arc-colored digraphs

Let H = (V (H), A(H)) be a digraph possibly with loops and D = (V (D), A(D)) a digraph whose arcs are colored with the vertices of H (this is what we call an H-colored digraph); i.e. there exists a function c : A(D) → V (H); for an arc of D, f = (u, v) ∈ A(D), we call c(f) = c(u, v) the color of f . A directed walk (directed path) P = (u0, u1, . . . , un) in D will be called an H-walk (H-path) ...

متن کامل

The Italian domatic number of a digraph

An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...

متن کامل

Dominance in a Cayley digraph and in its reverse

Let D be a digraph. Its reverse digraph, D−1, is obtained by reversing all arcs of D. We show that the domination numbers of D and D−1 can be different if D is a Cayley digraph. The smallest groups admitting Cayley digraphs with this property are the alternating group A4 and the dihedral group D6, both on 12 elements. Then, for each n ≥ 6 we find a Cayley digraph D on the dihedral group Dn such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011